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Correlat ion Inequal i t ies  for the Truncated  T w o - P o i n t  
Funct ion of  an Is ing Ferromagnet  
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We establish the following new correlation inequalities for the truncated two- 
point function of an Ising ferromagnet in a positive external field: (oj; or) r 

(Oj; ok)T(ok; Ol) T, and ( 9 ;  ot)r <<" ~I'~K(OJ; a1")r(~ where K is any set 
of sites which separates j from l. The inequalities are also valid for the pure 
phases with zero magnetic field at all temperatures. Above the critical tempera- 
ture they reduce to known inequalities of Griffiths and Simon, respectively. 
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1. INTRODUCTION 

We consider an Ising model with spins o; = ___ 1, on sites i = 1 , . . . ,  N, and 
Hamiltonian 

N 

- H =  Z Jij~ + E hioi (1.1) 
l<i<j<N i=1 

with Jo > O, h i >10. The partition function Z = 2-N~o,= + le -H (where we 
have set the inverse temperature/3 equal to 1) and expectations are defined 
by 

( .  ~ =  2 -N  ~ ( ' ) e - H / z  (1 .2)  

a i = + l  

We denote the truncated two-point function by 

(o~; o,) ~ -- (,~o,) - (o~)(o,) (1.3) 
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Theorem 1. Let J~ >i 0, h i >/0 in (1.1). Then 

(oj; or> T >i <off ok)T(ok; Ol> r (1.4) 

We will refer to each pair of sites { i , j }  for which J/j > 0 as a bond. A 
path from k to I is a collection of bonds b 1 . . . . .  b e such that k E bp l E b e, 
and b i and bi+ l have a site in common for i = 1 . . . . .  s - 1. A collection of 
sites K separates j from l if every path from j to l contains an element of K. 

Theorem 2. Let Jo >~ 0 and h i >1 0 in (1.1) and let K separate j  from 
l. Then 

<o:;o;) r < ~ <oj;o~>~<o:;> (1.5) 
k ~ K  

Remark 1. Theorem 1 is reminiscent of the inequality (ojol)  
) (ojok)(akol) due to Griffiths. (1'2) Theorem 2 resembles Simon's in- 
equality (3) : 

<o:,> .< ~ <o:k><o:,> 
k E K  

It would be desirable to prove an inequality of the form (oi ;o l )  r 
< ~k~K(Oj;Ok)r(Ok;Ot) r, however Baker and Bessis (4) have strong evi- 
dence (although no proof) that this cannot hold for the two-dimensional 
Ising model. 

Romark  2. Theorem 1 and the work of Baker and Bessis (4) show 
that if we assume for T < Tr that (00; or> r decays like e- '~r / r  b, then b >/0. 

We employ Griffiths' "ghost spin" method (2) which relates the model 
(1.1) to a new model (indicated by primes) which has an extra spin o 0 (the 
"ghost" spin) and zero external field. Specifically, the new Hamiltonian is 

- H'= E J.:jo, o./ (1.6) 
0<~ i<j<~ N 

where ' -  ' = J~j - J,j for i # 0 and Joj hi. Correlation functions are defined in 
the usual way. We have { ~  ( ~ 1 7 6  (o, . . .  i.) i f n i s e v e n  

O t ( ~ �9 �9 �9 i.) if n is odd 

Theorems 1 and 2 are contained in the following two results. 

Theorem 3. Let J~/> 0 in (1.6). Then 

<o:o~>' - <o:0>'<o,o0>' 

> (<~ - <O:o>'<o:o>')(<o: ,>'  - <o:0>'<o, o0>') (1.7) 
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Theorem 4. Let J,}/> 0 in (1.6) and let K separatej  from l. Then 

(ajo,>'- (ojo0)'(o, o0)' -< ((ojok)'- (1.8) 
k E K  

We conclude this section by giving an outline of the rest of the paper. 
Graphical methods are introduced in Section 2, and in Section 3 they are 
used to prove Theorems 3 and 4. 

2. GRAPHICAL METHODS 

We follow the notation of Aizenman (5) but note that these graphical 
expansions have been used previously by Kelly and Sherman, (6) Giffiths, 
Hurst, and Sherman, (7) Newman/s) and Simon. O) A key lemma for our 
analysis first appeared in the paper of Griffiths et a/. (7) 

Earlier, Griffiths (1'2'9) and Fisher (l~ used distinct, although similar, 
graphical expansions. 

For the remainder of the paper we will consider only the Hamiltonian 
(1.6) and the primes will therefore be dropped from the notation. 

Write 
Z = 2 -(N+I) E I I  e~~ 

ai=+l O<i<j<.N 

and for each bond expand the exponential 
oo j~b 

rib= 0 F/b! 

After averaging over the (o,.) we obtain 

Z =  ~,, W(n) (2.1) 
On=q~ 

where n is an assignment of positive integers to the bonds (we regard these 
integers as fluxes), 

W(n) = 1"I and On -- i[ i-I ( -  1) nb = - 1 
b nb! b~ i  

i.e., the set of sites where the net flux is odd. We call the set On the 
boundary of n and refer to its elements as sources. 

If we apply this procedure to correlation functions we find 

(ax)  = N W ( n ) /  ~] W(n) (2.2) 
~n=K an=~ 

(where o K = I I kEKak) .  
We will sometimes refer to an assignment of fluxes as a graph. Call s a 

subgraph of n if 0 < s b <. n b for all b and write s < n. 
A very useful tool is provided by the following result of Griffiths et 

a/.(7) 



180 Graham 

Lemma 1. Let V 1 and V 2 be sets of sites. Then 

E W ( n l )  W ( n 2 )  = E t W(n,) W(n2) (2.3) 
Onl = Vi anl = VIAV2 
an2= V 2 On2 = q~ 

where the primed summation has the restriction that n; + n 2 has a subgraph 
s with 0s = V 2. (A indicates the usual symmetric difference.) 

This lemma was used in Ref. 5 to give a probabilistic content to 
correlation functions and various inequalities. The intuition gained by this 
procedure makes the method considerably more powerful: see the results 
established there. 

The connected cluster o f j  in n I + n 2, denoted C., +-2(J), is the collection 
of sites that may be reached from j via bonds on which n 1 + n 2 > 0. The 

C b connected cluster of bonds o f j  in n I + n 2, .,+.2(j), is the set of all bonds 
that may be reached f r o m j  via bonds on which n 1 + n 2 > 0. By definition, 
all bonds in 6 �9 .,+-2(J) is C,,+.~(j) have n I + n  2 > 0 .  Note that when C b " 
specified, the additional information that the adjacent bonds are unoccu- 
pied is implied. The set of bonds formed by the addition of these unoccu- 

b �9 --b �9 pied bonds to C,.+.=(j) we denote C.I+,~(j), and refer to it as the aug- 
mented cluster of bonds of j in n I + n 2. We will say n 1 + n 2 has a path from j 
to k if there exists a path f r o m j  to k, b 1 . . . . .  b, for which nlb ' + n2b i > 0, 

i = 1 . . . . .  s, that is if k E C., +.=(j). 
The set of all bonds we will denote by B. 
For compactness, we introduce the following additional notation 

which is similar to that used by Newman. (8) 
We denote ~ o , = v W ( n )  by (V). The partition function will then be 

denoted by (q~). Expressions such as 

E /  W ( n , )  I'V(n2) 
~.l =j,k 

where the prime refers to the restriction that Cn~+n2(j) ~ O, will be denoted 
by (C(j)  ~ 01 {j,k},q~). 

Lemma 1 may be used to derive an appealing expression for the 
truncated two-point function: 

1 (ajOk) - (ajao)(OkaO) = - ~  ((j,  k)(ep) - (j, O)(k, 0)) 

_ 1 
Z2 (( j ,k) (4)  - (C( j )  ~ O[ { j ,k} ,~ ) )  

_ 1 
Z2 ( (C( j )  ~ O{j,k},O)) 

= (aj%)Prob(C(j)  ~ 0  1 { j , k} ,~ )  (2.4) 
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where the probability is evaluated in the system of two independent flux 
variables with the specified sources. 

The other tool we will need is the following simple corollary of the 
GKS inequalities. (1'2'6) 

[ . e m m a  2. L e t A  c_B be a set of bonds and denote by ( . ) A ,  the 
Gibbs state obtained by setting all the interactions to zero in A c. Then 

(ojo)) - (o),,k) A i> 0 

3. PROOFS OF THEOREMS 3 AND 4 

3.1. Proof of Theorem 3 

Since Z is positive, (1.7) is equivalent to showing the positivity of 

(q,)2((j, l)(eo) - (j, k)(k,  l)) - (~)(l, 0)((j, 0)(q,) - (j, k)(k, 0)) 

• (j,  0)((~)(k, l )(k,  O) - (l, O)(k, 0) 2) 

= 0 p ) Z ( ( j ,  1 ) ( ~ )  - (C(k) ~j[ (j,l),ep)) 
- (~)(t, o)((j, 0)(~) - (C(k) ~ o l (j, o), ~)) 
+ (j, 0)((~)(c(lc) ~ 01 (t ,0),~) - (l,O)(C(k) ~ 01~,~)) 

= (q')2(C(k) ~ J l  (j ,1),@) - (ep)(l,O)(C(k) ~ 0 [  (j,0),q~) 

+(j,O)(( l ,O)(C(k)  ~Olg,,q, ) - (q,)(C(k) ~01 ( l ,0 ) ,~ ) )  (3.1) 

where we have used Lemma 1 to get the first equality and added and 
subtracted (j, 0)(1, 0)(~) 2 to get the second one. 

The first term in (3.1) may be written as 

(4~)2(C(k) ~ j ,  C(j )  ~ 01 {j, l ), ep) + (q~)=(C(k) ~ j ,  C( j )  ~ 01 {j, l }, g,) 

= (~)2(C(K) ~ j ,  C( j )  ~ 0[{ j ,  l},,~) + (~)2(C(k) ~ j [ ( j ,  0}, {l, 0}) 

Hence (3.1) is not smaller than 

(~)2(C(k) ~01  (riO), {/ ,0))  - (r ~01 (j,O),q,) 

+ (j ,O)(l ,O)(C(k) ~01r  - (j,O)(ep)(C(k) ~ 0 ]  ( l ,0) ,O) (3.2) 

In each term of (3.2) we have the same restriction C.,+.2(k ) ~ O. We 
will evaluate the terms by conditioning on the event "the connected cluster 
of bonds of k in n I + .  2 is A"and then summing over the allowed class 
of A's. 
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We will denote by (Cb(k) ~ A 1~, ~b)A the sum 

E t W ( n l )  W(n2)  

n2 = ,) 

where the primed summation has the restrictions that the interaction 
has been set to zero in A c and C~1+.2(k)=--A. By (0)xc we mean 
~ ' , ,=~  W(nl), where the double primed summation has the restriction that 
the interaction is zero in A. (A is the augmented cluster of bonds.) 

(3.2) becomes 

E '  (c~(k) = A I~,,~)~ (~@(&(<J ,  0>zo(t, 0>7~ - <I, 0><j, 0>~ 
A 

+ (j ,  o>(t, o) - ( j ,  o>(z, o)70 

where the primed summation is over connected sets of bonds A such that k 
belongs to at least one of the bonds and 0 belongs to none of them, 

= E '  (Cb(k) -~ a l ep, r (~)2_ (q,)2(<j, 0} -- <j, 0}X0(<I, 0} -- <I, 0}X 0 
A 

(3.3) 
(3.3) is positive by Lemma 2. �9 
We state a corollary of the proof which will be used by the author 

elsewhere.(11) 

Corollas.  Let Jq > 0 in (1.6). Then 

(C(k) 5~01 {j,k}, {k,l })(q~)2 > (C(k) ~01 {j,k},e~)(C(k) ~01 {k,l },~) 

(3.4) 

Proof. In obtaining (3.2) from (3.1) the term (ep)Z(C(k)~j,C(j) 
01{ j, l}, 4)) was dropped. Hence, given (1.7) and (2.4) we have 

(q02(C(j) ~ 01 (j ,  I }, ~) - (~)2(C(k) D'j, C(j) 7~ O[ {j, 1 }, O) 
>(C(k) ~01 {j,k},ep)(C(k) ~01 {k,/},~) 

Therefore (~)2(C(j) ~ 0, C(k) ~ j I {J, l }, O) > (C(k) ~ 01 {j, k}, ep)(C(k) 
01 { k, l }, ~). This is equivalent to (3.4) by Lemma 1. �9 

3,2. Proof of Theorem 4 

(1.8) is equivalent to 

(q~)(C(j) ~OI {j,l},q~) < (C(j)~O[{j ,k} ,O)(k, l )  (3.5) 
k ~ K  
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Note  that 

(q~)(C(j) ~ 0 1  { j , l } , q , )  < ~,  ( ,~)(C(j)  ~ O , C ( j )  ~ k I { j , l } ,e?)  
k@K 

since the condit ion ~n I = ( j , l } ,  an 2 = @ forces n 1 + n 2 to have a path  f rom 
j to l and  every such path  contains at least one element of K. 

Hence,  using L e m m a  I it is enough to show the positivity of 

( C ( j )  ~ 0 1  { j , k } , q , ) ( k , l )  - ( C ( j )  ~ 0 1  ( j , k } ,  {k,/})(q~) (3.6) 

for each k. 
, ,c 'b (0~ ~ A "  and  sum over A. (3.6) We  condit ion on the event v.,+.2~ 

becomes 

~-~f (Cb(0)  =-- A [e~,q,)A(j,k)2,(q,)2o(e~)((k,l ) - ( k , l )~c )  (3.7) 
A 

where the pr imed summat ion  is over connected sets of bonds  A such that  0 
belongs to at least one of the bonds  and j and  k belong to none  of them. 

(3.7) is positive by  L e m m a  2. []  
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